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Technological toolbox & application in transcriptomics

= nucleic acids QC
- Nanodrop & qubit
- capillary electrophoresis

- Historical perspective
- Illumina short reads description, strengths, pitfalls...
- Long reads (Oxford Nanopore, PacBio)
-  RNA-seq

-  mRNA-seq methods

- Whole transcriptome methods

-  New developments (3’ end...)

- Single cells RNA-seq



Transcriptomics, genomics, epigenomics:

Fields of studies (fundamental questions)
And
Groups of methods
both intimally linked (parallel development)



Nucleic acids quantification

Spectrophotometer (nanodrop)

- Old technique.
- Molecules absorb light at specific wavelength (DNA, RNA, proteins, lipids...).
- Measures absorbance -> calculate concentration.

xenon flash lamp
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To distinguish RNA, DNA, ssDNA - shapes of curves
Also used to assess purity: 03

260/280 ratio 1.8 = pure dsDNA
260/280 ratio 2= pure RNA
260/230> 2 for pure RNA or DNA o1
320nm =0
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- Old technique.

Nucleic acids quantification

Spectrophotometer (nanodrop)

- Molecules absorb light at specific wavelength (DNA, RNA, proteins, lipids...).
- Measures absorbance -> calculate concentration.

xenon flash lamp
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Problems:

1.
2.

Cannot truly discriminate RNA from DNA when mixed

Contaminating solvants can absorb at same wavelengths -> OK-enough at high
concentration, but can lead to huge overestimation at low concentration (e.g: 50
ng/ul instead of 1 ng/ul).

Sensitivity: 1ng/ul > Not sensitive-enough for new genomics applications



Nucleic acids quantification

If using nanodrop, use latest “nanodrop One” version, = identifies/corrects for most frequent
contaminants.

A Contaminant Analysis

Original:
Concentration result without any Acclaro
Contaminant correction applied. Blue Spectrum

Corrected:
Concentration result with Acclaro

Contaminant correction applied. Green Spectrum

Impurity:

Contaminant that has been detected and

how much 260 nm absorbance the contaminant
contributed to 260 nm peak. Orange Spectrum

Credit: Thermo

DNA contaminated with proteins



Nucleic acids quantification

Fluorescence-based methods (Qubit, Quant-It picogreen, ribogreen...)

Intercalating dyes = fluorescent upon binding

Very accurate (no fake signal from most solvants/contaminants)

Very specific (discriminate RNA/DNA/ssDNA)

Very sensitive: “0.1 ng/ul for DNA, 2 ng/ul for RNA

Downsides: requires pipetting, not free, standard curve (hence errors, use pos control).




Nucleic acids quantification

Recommendation of GECF:

- <50 ng/ul = always fluorescence-based.
- >50 ng/ul, nanodrop can be used, specially for large series or if perfect quantification not required.



Nucleic acids QC

High sensitivity capillary electrophoresis for RNA and DNA samples



Nucleic acids QC

High sensitivity capillary electrophoresis for RNA and DNA samples

Applications: QC of RNAs, cDNAs, genomic DNA, NGS libraries...
- Very sensitive both for RNA and DNA (0.1 ng/ul)
- Fluorescence detection when reaches camera -> size




Nucleic acids QC

High sensitivity capillary electrophoresis for RNA and DNA samples

Applications: QC of RNAs, cDNAs, genomic DNA, NGS libraries...
- Very sensitive both for RNA and DNA (0.1 ng/ul)
- Fluorescence detection when reaches camera -> size
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Fluorescence

Nucleic acids QC

High sensitivity capillary electrophoresis for RNA and DNA samples

Typical profile of a good quality RNA

Distinct 185 ribosomal
subunit (or prok. 165)

\

Mo well defined peaks
between ribosomal

peaks \

Distinct 285 ribosomal subunit (or prok.
233): ideally 2X size of 185

Flat baseline throughout
electropherogram
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MRNAs too low amount (2-5%)—> rRNA (80%) as surrogate
= RIN (RQN) score (profiles of 28S and 18S)
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Nucleic acids QC

High sensitivity capillary electrophoresis for RNA and DNA samples

Profile of a good quality cDNA (dsDNA form)
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Smear from 500-2’000nt (rRNA excluded by cDNA creations protocols)



Nucleic acids size selection (AMPure beads)

Ratio beads volume:sample volume
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High Throughput sequencing (NGS)



High Throughput sequencing (NGS)

Historical perspective

Sequencing:
Sanger sequencing: 1 DNA fragment per reaction, used for 15t human genome sequencing
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Around 2005: “next generation sequencing” = millions sequencings done in parallel (Illumina, Roche/454, SoliD, lon Torrent)
Only lllumina remained on the market (+ lon Torrent in diagnostics)
Now, competition is again active, with Element Biosciences, Singular Genomics, Ultima Genomics, MGI...

FYI




MiSeq

NextSeq

NovaSeq

High Throughput sequencing (lllumina)

Typical NGS Services

Low vyield
Only specific applications (amplicons sequencing, bacterial genomes)

Medium yield
Broad range of use

Up to ultra-high yield
Any application (WGS in particular)



High Throughput sequencing (lllumina)

clustering and sequencing run

Clustering= serves to amplify signal during imaging

Input in the sequencer: gl
NGS libraries (dsDNA).
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High Throughput sequencing (NEW: Aviti)

- Rolling circle amplification = polonies
- fluorescently labelled oligos bind = washed away (sequencing by binding)=> no scar-> low errors
- Why cheaper? Less reagents usage, 2 reasons:

- Very low non-specific binding surface

- “Avidites”:

Avidity Sequencing uses distinct enzymes for detection and synthesis,
dllowing each step to be separately optimized

A Bind Avidite »  Wash »  Deteet Base > Remove Avidite » Step with Block »  Remove block

Peversably femnmated
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Element Biosciences



High Throughput sequencing (lllumina)

clustering and sequencing run

- Microscope requires strong fluorescent signal = clusters = out of sync molecules within the cluster - rapid
decrease quality over fragment length = only small DNA fragments, aka “short reads” sequencing (50-300nt).
- Throughput from 1 mio to 20’000 mio reads (1 human genome at 30x coverage is “400mio PE150 reads)




DNA fragmentation

QCed/
quantified

High Throughput sequencing (lllumina)
Library prep

End conversion and PCR amplification To NGS #
adapter addition foptional) workflow |
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reads) Thermo website
readl seq. .
. q index seq.
primer i
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read2 seq.
primer blndlng to
flow cell

binding to
flow cell
2 modes: Single-end (single read, SR, e.g. SR75), or paired-end (PE, e.g. PE150)

Index: for multiplexing/pooling samples on the flow cell

- Files obtained = .fastq



High Throughput sequencing (lllumina)
QC with FastQC

Q30 metrics (quality estimation)

“suboptimal (but frequent on older
perfect good instruments)

@per base sequence quality @Per base sequence quality

Quality scores across all bases (Sanger / llumina 1.9 encoding)

Quality scares across all bases (Sanger / llumin 1.9 encoding) 6 Quality scores across all bases {Sanger / lllumina 1.9 encoding)
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The real metrics for read quality is % error rate (spiking of a known PhiX genome library in each run): typical <1%




High Throughput sequencing (lllumina)
QC with FastQC

@Per base sequence content

Seguence content across all bases
100

WT
i
a0 o
W5
a0 GC content (%)
70
genome (can
60 vary amongst  polyA+
- chromosomes) transcriptome
Saccharomyces cerevisiae 38
a0 Homo sapiens 41 45-48
w0 Mus musculus 42 48-50
/\V\;\:?¢ :
Pseudomonas aeruginosa 60
20 \‘—
Lo GECF internal FYI

1234567828 11 13 15 17 1% 21 23 25 27 29 31 33 35 37 3% 41 43
Position in read {bp)
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% base content can indicate issues, but no universal “good values”



High Throughput sequencing (lllumina)
QC with FastQC

@Sequence Duplication Levels

Percent of seqs remaining if deduplicated 49.56%
100
% Deduplicated sequences

% Total sequences
S0

30
70
50
50
40
30
20

w P

a 1 2 3 4 5 6 7 g 9 =10 =50 =100 =500 =1k =5k =10k
Sequence Duplication Level

Fragment duplication (=mostly PCR duplicates) rate is important but vary a lot depending on applications (see later)



High Throughput sequencing (lllumina)

Short-reads sequencers conclusion

Strength:

- Very high throughput

- Low error rate

- Flexible and very well established (hundreds of library prep protocols)

BUT:

- Still quite expensive

- Short reads only (max 500-600nt)—> poor for isoforms/alternative splicing, structural
variants...

- Long reads sequencing: PacBio and Oxford Nanopore

Korf, Nature Meth., 2013



High Throughput sequencing
Long Reads Sequencing

Single-molecule sequencing (no clusters) = no signal alteration over length of fragment = Mb long reads

But faint signal more prone to background error rate)

PacBio:
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Oxford Nanopore (MinlON,
Flongle):
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Also possible to detect DNA methylation
and to directly sequence RNA
- Inthe field!

’

Image: Nature

FYI

Both: too low throughput, and too high error rate 2 complementary to short reads sequencing




High Throughput sequencing
Gene Expression analysis (RNA-seq)



High Throughput sequencing
Gene Expression analysis (RNA-seq)

Workflow: RNAs - libraries = sequencing = mapping to transcriptome

Main applications:
- quantification of RNAs/mRNAs (counting mapped reads):

- mostly/only done with Illumina short reads (since needs very high depth)
- “sequencing” per se (de novo transcriptome, isoforms...)

- best done with long reads sequencing

91,548,000 91,550,000 91,552,000 91,554,000 91,556,000 91,558,000 91,580,000
[} | | |




High

Throughput sequencing

Gene Expression analysis (RNA-seq)

mRNA-seq library prep (“coding transcriptome”) (RIN>7, eukaryotes only)

AALAAAAA
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¢ RMNA iz polyA sslacted, fragmented,
and mandomily primead
L First-strand cONA synthesis
cDNA Second-strand cONA synthesis,
l marked to enable strandedness
\L Fragments are filled and adenyisted
l. Adapter are fgated
Inchiml!
I e
I
indiei T
¢ PCR ampiification and index addition
I

Indexed library ready for sequencing

Credit:lllumina

Libwary chean up, quanitification,
and normalization

- mRNA capture by oligodT beads (discard rRNA...)(explains requirement for good RIN)

- heat fragmentation (short reads requirement)

- reverse transcription (random primers)

- dsDNA (2" strand synthesis) + strand marking

—> adapters ligation (for PCR, flow cell binding and sequencing primer binding sites)

- PCR (to increase amount)



High Throughput sequencing
Gene Expression analysis (RNA-seq)

2"d strand synthesis

Not needed for gPCR (since 2 primers), but needed for transcriptome-wide library prep!
RNA

1 First-strand cONA synthesis

RNase H + E. Coli Polymerase 1

Strand-specificity («stranded protocols»)

Reads from each strand
are distinguished
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2"d strand is not e -
P PS5 amplified during PCR MSPR
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q21.31 q21.33 q23.1 q23.3 q24.12 q24.22 q24.31 q24.33
FYI
credit: lllumina credit: Takara



High Throughput sequencing
Gene Expression analysis (RNA-seq)

“total” RNA-seq (whole transcriptome RNA-seq) (“any RIN, bacteria OK)

¢ Enzymatic fANA depletion
Total RNA [depleted of rRNA and globin mRMNA)
RNA fragmeniation and cenaiuration
# First=strand cOtA =
Sacond-strang cONA symthesis,
clDbEA marked fo ensble standedness
v
L Fragments ane filed and adenplated
* Adapiers are hgated
[Eree)
R - i (Rl 1 &
I
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indead P 5P e, af

Credit:lllumina

Libravy cisan up, quamtibostion,

- rRNA depletion by rRNA-targeting oligos (discard rRNA)

- heat fragmentation (short reads requirement)

- reverse transcription (random primers)

- 2" strand synthesis = dsDNA

—> adapters ligation (for PCR, flow cell binding and sequencing primer binding sites)

- PCR (to amplify)



High Throughput sequencing
Gene Expression analysis (RNA-seq)

Cell lysis (Steps 1-8)

| VERY LOW AMOUNT mRNA-seq library prep (RIN>7, “smart-seq”)

Poly(A)" RNA
N U AAAAAAAAAA

l Oligo(dT) primer §§

Reverse transcription
and terminal transferase (Steps 9-11)

LNA-containing TSO

BT (61646 e AMAAAAAAAA -> RT adds a few CCCs at the end of cDNA - GGG-containing oligo annealed (“TSO”) =

o o .
\ “template switch”
l Template switching

by reverse transcriptase (Steps 9-11)
ISPCR primers

| I—
| —— | 1 . . .
[E— - known sequence now on both sides (in only 1 step) = no need for “2" strand synthesis”
ISPCR primers
l PCR preamplification of cDNA (Steps 12—14)
PCR cleanup (Steps 15-26)
NI GGG | 1
I CCC | 1

l Tagmentation (Tn5) (Steps 28-31)

at Lt Lt at

1GGG |
I CCC |

- fragmentation + partial adapters addition by tagmentation (less steps, less loss)

l Gap repair, enrichment PCR

. and PCR purification (Steps 32—36)
P5 primer i5 index

[ — —
____ [
] |
I
i7 index P7 primer
Sequencing (Steps 37—41)
[ = ]
44— Read?2seq

iSindexiseq  Fisad 1:seq Sequencing-ready fragment —Jp» {7 index seq

Sandberg Nature 2014, FYI FYI




High Throughput sequencing
Gene Expression analysis (RNA-seq)

«tagmentation» by transposase from Tn5 transposon

Transposomes

Genomic DMA

‘ Tagmentation

::::— [ ] '— |. [

‘ Reduced-Cycle
PCR Amplification

Sequencing-Ready Fragment

From: lllumina

Tn5 transposase:

- Mutated hyperactive enzyme
-19nt recognition sequence
(«mosaic ends»)



High Throughput sequencing
Gene Expression analysis (RNA-seq)

Mapping and data analysis

81,548,000
1

B1.E-E-ID.DDD 21,552,000 B1.E-Ei4.DDD 21,556,000 21,558,000 B1.E€iD.DDD
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- 15-50 mio reads/sample = mapping = counting

- normalization & expression quantification, e.g. for mRNA lengths & mio reads (rpkm) 2>
differential expression (multiple pipelines, see bioinfo part)
- (gene set enrichment analysis)



High Throughput sequencing
Gene Expression analysis (RNA-seq)

Recent development: 3’end sequencing

Only 3’ end of cDNA kept
- Barcode added at beginning (RT) = early multiplexing/pooling = streamlined protocol
- no need for mRNA length normalization.

- less reads/sample needed (5mio/sample, cheaper).
- ... but misses isoforms...

7/~ oligo dT Flow cell adapter
WAAAAAAAAAAAAAA
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Mapping on 3’end Recent EPFL method



High Throughput sequencing
Gene Expression analysis (RNA-seq)

Conclusions

Strength:

Exhaustive

Extremely broad linear/dynamic range

Very sensitive if enough sequencing depth

Many protocols exist: any quantity/quality of starting RNA

Pitfalls:

expensive for many samples

For a defined set of lowly expressed genes-> gPCR may be as good

Much longer turnaround time than qPCR

(Data analysis less straightforward > more possibilities of bias than gPCR)



Gene expression studies
Experimental design

Which technology is best suited?:
- qPCR?: Low price, very fast data, when only a few genes of interest, lots of samples
- RNA-seq?: comprehensive analysis of coding transcriptome, intermediate number of samples, weeks
before data, well-established
- 3’-end mRNA-seq? comprehensive analysis of coding transcriptome, “cheap”, high number of samples,
weeks before data



SINGLE CELLS RNA-seq



Single Cells
Why single-cell?

Single cell transcriptomics

* More resolution on the studied system

e.g. intestinal crypt,
developing cersbral cortex

Teichmann, Mol Cell, 2015



Single Cells
Why single-cell?

Single cell transcriptomics

* More resolution on the studied system

* Rare cell types (unsupervised, no prior knowledge needed)... what is a cell type?
* Cell to cell heterogeneity (normal tissues, tumors)

* Developmental process (intermediate cell states, transitions)

* Easier to define gene regulatory networks (easier correlations)
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Single Cells scRNA-seq

Historical perspective: explosion of scRNA-seq methods since 10 years

a Manual Multiplexing Integrated fluidic Liquid-handling Nanodroplets Picowells In situ barcoding
circuits robotics
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https://www.nature.com/articles/nprot.2017.149

Single Cells scRNA-seq

Historical perspective: C1 system (Fluidigm)

Microfluidics-based single-cells capture and processing

A captured cell

* Full-length (Smart-seq)
* Only 96 cells

FYI




Single Cells scRNA-seq
Historical perspective: Higher throughput - DROP-seq

A — [—
1.Cells from ®
suspension Cell  Microparticle 5.ANA hybridization
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Single Cells scRNA-seq

10X Genomics Chromium

| . i} C =) L8 J
Collect RT Remove Oil
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Single Cell 10x Barcoded 10x B ded
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* Gel beads that dissolve in droplet
* Strengths:
* High throughput (500 — 30’000 cells)
* Any cell size up to 60um (if larger: use nuclei)
* Sensitivity 1’000-5’000 genes (won’t get rare transcripts, ca 10k in theory)
* Nuclei when true single-cells suspension not possible (neurons)
* Can get TCR/Ig sequence in parallel -> clonotypes / “immune cells profiling”
* Downsides:
e Cannot image cells
* Not best-in-class sensitivity (bad for lowly expressed genes)

bead

oligo dT
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Flow cell adapter



Single Cells scRNA-seq

10X Genomics Chromium
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Single Cell 10x Barcoded 10 Barcoded
GEMs <DNA cDMA
cDNA creation similar to low-amount RNA-seq (TSO), 3’-end sequencing (mRNA read sequence needs to be “attached”
with cell barcode in addition (“10x barcode”): to the cell barcode, so only 3’ end can be sequenced)
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Single Cells scRNA-seq

10X Genomics Chromium
UMI

Very low starting amounts = PCR bias = solution: UMI (unique molecular identifiers)

oligo dT Flow cell adapter
‘_/\_/\MAAAAAAAAAAAAAA

PCR amplification
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Single Cells scRNA-seq

10X Genomics Chromium

CellRanger user friendly reports, with QC and warnings

Estimated Number of Cells

3,168

ean Reads per Cell edian Genes per Cell
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Name
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Single Cells scRNA-seq

10X Genomics Chromium

Loupe browser:
- user friendly

- clustering (rare populations)
- differential gene expression

a0 e Loupe Cell Browser - AMLTutorial

Heatmap of Graph-Based Log?2 Fold Changes:
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Cluster 11 w03
Cluster 12 (3v0r
Cluster 13 (3s9)

Cluster 14 (3s01
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22 Split View
B Significant Genes

Loupe Cell Browser 2.0.0 - AMLTutorlal
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4.3 www 50030
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Single Cells scRNA-seq

10X Genomics Chromium
Issues?

Typical issues (any single cell method):

- Doublets - fake subpopulations (specially if data have only 2-3 big clusters)? Cause?
- Poor dissociation?
- Or too many cells loaded?

Multiplet Rate
Cells (%)
BT 0
o8
o [
B
1%
o [ERTY
o
5
-
s
7.6

- Fake populations from dying cells? Cell cycle stage?... (look for mitochondrial gene reads
for suffering)

- Sub-population of tiny cells, or debris?

- dropout (lowly expressed genes)



Spatial Transcriptomics
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10X Genomics Visium

Visiurn Spatial Capture Area with Visium Gene Expression
Gene Expression Slide 5000 Barcoded Spots Barcoded Spots

Partial Read1 Poly(dT)

SN

Figure 1. Here we show the composition of the Visium Spatial Gene Expression slide. Each slide contains four Capture Areas with approximately
5000 barcoded spots, which in turn contain millions of spatially-barcoded capture cligonucleatides. Tissue mRNA is released and binds to the

 —_—

barcoded cliges, enabling capture of gene expression infermation.

- Frozen tissue

- H&E and IF compatible

- Transcriptome-wide

- Clusters -> overlaid on tissues images

FYI




10X Genomics Visium

tSNE 2

tSNE 1

HE&E Image Gene Expression Clustering Clusters on Image
Mouse Olfactory Bulb

Visium HD

e R o e

B Cluster 1
B Cluster 2

B Ciuster 3
B Clusier &
B Cluster §
B Cluster &
B Cluster T o
B Cluster &

it ant Faatare Do it
Globally Diglinguishing -

Fasiurs Typs:

Gana =

C

FYI




10X Genomics Visium

HE&E Image Genes per spot Transcripts per spot
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General conclusions
Key concepts

A broad range of transcriptomics methods is available with almost no limitations, starting from
scarce amounts of degraded RNAs. Though good quality samples yields better data.

Single-cell transcriptomics brings more resolution

Spatial transcriptomics brings spatial localization
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